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Abstract. Diffuse backscattering of electrons at a single crystal surface is often due to the
adsorption of atoms or molecules whose presence breuks the translational symmetry of the
substrate surface. Two different approaches to the diffuse LEED problem have been given.
The first, due to Saldin and Pendry, considers only asingle molecule adsorbed at the surface.
The second, due to the present authors, considers a partially ordered overlayer of molecules
and takes up the statistical aspect of the diffuse LEED problem. The first aim of this paper is
to compare both approaches. In the case of adsorbates randomly and sparsely distributed at
the surface, we show that they are equivalent. However, each of them uses a different
concept for the renormalized t-matrix of the adsorbate.

The renormalized t-matrix used in the present approach depends on the t-matrix of the
molecule alone and on the scattering amplitude of the bare substrate. The problem of the
determination of the latter quantity has ailready been treated: LEED theories have been
published and many LEED computer programts are now available, Paradoxically, the similar
problem for a molecule, that is to say for a cluster with a small number of atoms, has not
been so well studied as the previous one concerning an infinity of atoms. The second aim of
this paper is to provide a theory of multiple scattering of electrons from a molecule, from
which we can derive a suitable expression for the t-matrix that one can easily use in the
diffuse LEED theory. Application to the simple case of the CO molecule is examined here.

1. Introduction

The diffuse LEED theory aims to provide an expression of the intensity per unit of solid
angle of electrons which are elastically backscattered from a partially ordered crystal
surface, in the non-Bragg directions. On the basis of this expression, a comparison of
measured and calculated diffuse intensities can be carried out to yield a set of optimal
parameters characterizing the nature and the location of atoms at the surface.

Partial order at the surface is due to the fact that atoms or groups of atoms located
in the first atomic surface layers are not perfectly arranged to form a 2D regular lattice.
The breaking of the 2D translational symmetry of the substrate can be due to the presence
of atoms or molecules sparsely adsorbed at the surface (Pendry and Saldin 1984) or to
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the presence of geometrical defects such as vacancies (Rous and Pendry 1983), steps
(Rous and Pendry 1986), displacements of substrate atoms induced by chemisorption
(Rous et al 1986) and so on. In previous papers (Le Bossé et al 1988, 1990) we examined
the first case where disorder has a chemical origin. We have shown that the diffuse LEED
intensity can be expressed in terms of the Fourier transform of the site occupancy pair
correlation functions and of the renormalized t-matrices of molecules adsorbed at the
surface. Here, renormalized means that certain multiple scattering processes between
admolecules and substrate are taken into account, namely those involving one scattering
event at a molecule. The renormalized t-matrix of a molecule adsorbed at a site of type
pis given by (Le Bossé er al 1988 equation (4.14), 1990 equation (3a)):

Ki(p, ki «—k}) = t(p ki « ki) + 2 t(p, ki —kpM(k; < &)
et

EﬁM ke — kD (p, ki <k
+ 2y (ki — k{0 (p, ki < ki)
g} e
55X M —x: ki, kg WL(kD, «— &} 1
+ “K—- s( f [gz)tl(p’ fga < ig;) s( gy i)' ()
{e1t (g2t P igos

In this expression, the wave vectors are defined by

K,=VE- Vopt - th!“ . o (2(1)
Kgé_ =VE- Vopl - ”kil +?”7 (Zb)
ki =k+gFK, 2 (2¢)

In equation (2¢), Zis the unit vector in the direction of the z axis. So, as the substrate lies
in the region z >0, k; is a wave vector oriented from the vacuum to the substrate.
Equations (2a), {2) and (2c) implicitly assume that the molecular scattering potential
due to ion cores is added to a constant potential V,, due to the conduction or valence
electrons of the adsorbate-substrate system. Labels f and i in equation (1) denote the
final and initial states respectively, and label 1 in t; and K, refers to the reference site of
the surface taken as the origin. The label p denotes the kind of site considered; for
instance, p =1 and p = p,, = 2 could denote on-top and hollow sites respectively
if both kinds of chemisorption site are occupied. The determination of K, requires
knowledge of:

(i) the transition matrix t;(p) of each isolated adsorbate p;
(if) the scattering matrices M of the substrate for wave vectors parallel to the surface
inthe direction of the electron gun (k;;) and in the direction of the electron detector (ky).

Equation (1) is derived from a statistical approach to the diffuse LEED problem (Le Bossé
et af 1988). With this approach, a large number of molecules, which can occupy one or
several kinds of chemisorption sites, are considered. It turns out to be convenient to
separate the total scattered wave associated with a given configuration of the overlayer
into its average over a statistical ensemble of configurations and its fluctuaticn from
this average. We have shown that iwo approximations are needed to get a tractable
expression for the diffuse intensities in terms of K:

(i) the total wave function scattered at the adsorbate—substrate system is approxi-
mated by a first-order expansion in the fluctuations of the wave function;
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(ii) a part of the wave illuminating a scatterer i, is emitted from the scatterers other
than i; so this wave is approximated by its statistical average (this is nothing other than
a molecular field approximation).

In the particular case where there is only one kind of chemisorption site and where
the occupied sites are randomly and sparsely distributed at the surface, the expression
for the diffuse LEED intensity reduces to the product of the square modulus of K, by a
factor proportional to the surface coverage in molecules (Le Bossé et af 1988).

Another approach ( Pendry and Saldin 1984, Saldin and Pendry 1986, 1987) consists
of considering only one molecule adsorbed at a perfect infinite single crystal surface. In
this way, the statistical aspect of the diffuse LEED probem has been totally ignored. In
the course of this approach, these authors are led to define a renormalized t-matrix of
the molecule:

T=Ty(1-8Ty) " (3)

In this expression, Ty, is the molecular t-matrix denoted here by t; and S is the reflection
matrix of a cluster of substrate atoms which is related to the scattering matrix M, of the
substrate in equation (1).

Insection 2, we discuss the present work in relation to the work of Saldin and Pendry.
However, we can a priori assert that K, and r cannot be identical for the following
reason. The calculation of Saldin and Pendry (henceforth SP) is split into three steps
(Pendry and Saldin 1984): steps 1 and 3 take account of all multiple-scattering events
which either begin or end with a multiple-scattering event at the bare substrate and step
2 takes into account all the other scattering events, that is to say those which begin and
end with a single multiple-scattering event at the molecule. The SP renormalized t-
matrix only refers to processes included in step 2. On the other hand, we carry out a
global calculation and consequently our definition of the renormalized t-matrix includes
all processes of steps 1 to 3. Hence our renormalized t-matrix cannot have the same
meaning as the one introduced by Saldin and Pendry.

Equation (1) of the renormalized t-matrix of the molecule can be calculated from
the t-matrix t, of the single molecule and the scattering matrix M, of the bare substrate.
Expressions for the scattering matrix M, of a semi-infinite single crystal can be found in
a lot of reference books (Pendry 1974, Van Hove and Tong 1979, Marcus and Jonas
1984). In the case where the adsorbates are atoms, the t-matrix is related to their phase-
shifts by a standard expression which can be found in most classical quantum mechanics
books (see equation (20) of section 3). On the other hand, it is difficult to find in the
literature a sharply stated expression of the molecular t-matrix that we could use
straightforwardly in the diffuse LEED theory previously presented (Le Bossé ez al 1988,
1990). So, applications for the case of molecular chemisorption require that we develop
a theory of multiple scattering inside a molecule, leading to an accurate expression for
the molecular transition matrix.

In section 3, such an expression is given. Use of this expression requires that we
know the location in space and all the non-negligible phase-shifts at a given energy of
each atom of the molecule. In section 4, a short numerical application is carried out for
the simple case of the CO molecule with the geometrical parameters determined in the
case of adsorption on a Pt(111) single crystal surface. This paper is followed by a second
one containing a diffuse LEED study of the Pt{(111) surface partially covered with CO
molecules.
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2. Statistical and single-adsorbed-molecule approaches of the diffuse LEEp problem

The statistical approach to the diffuse LEED problem (Le Bossé e al 1988) is too
complicated to be described clearly here in a few words. However, it is possible to
provide a new and very simple approach to this problem presenting a great similarity to
the single-adsorbed-molecule approach due to SP. So, thanks to this similarity, both
approaches can be compared. Moreover, it will be seen that this new approach and the
statistical approach rigorously lead to the same concept of the renormalized t-matrix.
However, these approaches cannot be equivalent in that the new approach does not
include the statistical aspect of the diffuse LEED problem. They are equivalent only when
the molecules are randomly and sparsely distributed at one kind of chemisorption site.
A description of this new approach only needs to use two standard results given in any
reference book about scattering theory:

(i) the Lipmann-Schwinger equation:

lw) = @) + G§ (Vs + Vi)l (4)
(i1) the t-matrix definition:
(Vs + V)l =Ts 1l (5)

|¢) denotes the quantum state of the free incident electron and |y) is that of the scattered
electron. V and V), are the substrate and adsorbate potentials and thus Vg + V, and
Ts..; are the potential and the t-matrix of the adsorbate—substrate system respectively.
(' is the retarded Green function of a free electron of kinetic energy E moving in a
constant potential V.. Our aim is to find |y) by solving equation (4). We proceed as
follows. We define |@,) and |gs) as the effective incident waves which illuminate the
adsorbate and the substrate respectively:

lp) =) + G§ Vi) (6)

lps) = @) + Gi Vi|w). (6b)
Now, there are two ways of writing the total scattered wave |y):

lv) = le) + GEViiwd (7a)

W) = |@s) + G§ Vily). (7b)

Adsorbate and substrate t-matrices are straightforwardly obtained from the definition

(5):

Vilgy =t @) (8a)

Vslw) = ts los). (8b)
Then, equations (6) and (7) can be rewritten in the form

lp1) = ¢} + GJ ts|ps) (9a)

lps) = @} + Gitilgs) (95)

vy =(1+ Git)lg;) (9¢)
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v = (1 + Gi tg)|ps)- (5d)
It is very convenient to give a kinematic form to the total transition matrix Ts., ;, that is
T =t5 +t7 (10)

in which t§ and t{ are the substrate and adsorbate effective (and not renormalized) t-
matrices respectively. So, using equations (5), (9) and (10), it can be straightforwardly
shown that

t =t + Gyt (116)

From equations (4), (5), (10) and (11), the total wave function is expressed in terms of
the t-matrix of the molecule alone t;; the t-matrix of the substrate alone ts; and the
effective t-matrix of the substrate t . So we obtain

[y} = |} + Gits|o) + Gitigy + GitsGity|o) + G, G tE @)
+ GG, GitE [¢). (12)

Let us point out that the physical meaning of G t|¢) is more obvious than that of the t-
matrix t because if |¢) is the primary incident beam, then G{ t|¢) is the scattered wave
and G§ tis the scattering amplitude matrix. So, equation (12) can be easily interpreted.

The two first terms represent the total LEED wave |y ggp) because Gt is the
scattering amplitude matrix of the substrate alone, for which 2D translational symmetry
exists. As a consequence, the remaining terms denoted by | yp, gep) represent the diffuse
LEED wave which can be written in the form

|¥pLeep) = GT K. | 9. (13)

By comparing equations (12} and (13), we obtain the renormalized transition matrix of
the molecule:

Let us remark that this expression, which is very similar to equation (1), is exact. If
we replace t§ with ts in equation (14) it is easy to show that the representation of the
operator K; in the basis set of the plane waves exactly coincides with equation (1). From
that point of view, statistical and single-adsorbed-molecule approaches are in perfect
agreement. However, there are two reasons that they cannot lead to the same expression
forthe diffuse LEED intensity per unit of solid angle. Firstly, the average distance between
admolecules is not generally large enough to consider them in isolation. Secondly, they
are not randomly distributed at the surface and consequently the waves scattered from
the admolecules do not have a random phase. So, interferences between these waves
have to be taken into account via a structure factor (Le Bossé ef al 1988). Finally, the
two approaches are equivalent only in the particular case where the admolecules are
randomly and sparsely distributed at the surface. Let us recall that we can get equation
(1) from the statistical approach only if we assume that the fluctuations of the scattered
waves from their average are negligible (Le Bossé et af 1988). On the other hand, it is
shown here that the single-adsorbed-molecute approach leads to equation (1) when we
neglect the relaxation of the substrate t-matrix induced by the presence of the molecule

(tE =tg).
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To make the subsequent developments clearer, the physical meanings of the four
terms in equation {14) have to be examined. It is important to note that there are three
kinds of diffuse multiple-scattering event:

(i) those which are terminated with a single-scattering event at the molecule (first
and third terms of equation (14}). For these terms, a left-hand factorization of the t-
matrix t, can be achieved;

(ii) those which begin with a single-scattering event at the molecule (first and second
terms of equation (14)). for these terms, a right-hand factorization of t, can be achieved;

(iit) the fourth term of equation (14) for which one can do neither left-hand nor right-
hand factorization of t,.

Let us now come back to equation (3} of SP. All the multiple-scattering events
involved in this expression are terminated with a single-scattering event at the molecule
because of the left-hand factorization of T,;. So equation (3) does not take into account
all the multiple-scattering events which are terminated with a scattering event at the
bare substrate. Moreover, if we expand equation (3) in a power series in STy, it appears
that we can do a right-hand factorization of Ty. Consequently, equation (3) does not
take into account any multiple-scattering event which begins with a scattering at the
bare substrate. Note that such a limitation could be envisaged in the EXAFS, XANES and
ELNES problems in which the emission of a photoelectron from a molecule is necessarily
the first event which participates in any multiple-scattering process.

Let us now examine how to derive equation (3) of SP from our result. Firstly, we
have to remove all terms associated with multiple-scattering events terminated by a
reflection at the bare substrate, because they are already taken into account in step 3 of
the SP calculation. Then equation {(14) reduces to

K=t +4,GJts =t}. (15a)
This amounts to assuming that the effective and renormalized t-matrices of the molecule
are identical. Secondly, we have to remove all the terms associated with multiple-
scattering events which bepin with a reflection at the bare substrate, because they have

already beentakenintoaccountinstep 1 of the SP calculation. This condition necessitates
the replacement of (11a) by

t =tGith. (15b)

Then, from equations (13a), (15k) and {11b), we can straightforwardly show that K,
becomes

Ki=t,[1 = (Git) (Gt} (13¢)

which is rigorously equivalent to equation (3). So, it is clear that the renormalized t-
matrix introduced in the statistical approach to the diffuse LEED problem (Le Bossé et
al 1988, 1990), and rediscovered here by another approach, is totally different to the
renormalized t-matrix of SP.

3. Multiple scattering from a molecule

3.1. Basic definitions

Let us consider a molecule with N, atoms. The atom « of this molecule is characterized
by
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(i) the vector r, which defines its location,
(ii) all its non-negligible phase shifts 87 (/=0,1,...,1,).

We assume that this molecule is immersed in a homogeneous medium with a potential
Vop- The characterization of the scattering properties of each atom by phase shifts
implicitly requires the use of their ion core potential described by a muffin-tin model.
For convenience, the origin of space will be chosen at the centre of the smallest sphere
of radius R, including all the atomic muffin-tin spheres. Let us call V{(r) the molecular
scattering potential:

N

Vir) = z“ V. (r—ry). (16)

In this expression, V',(r) is the scattering potential of atom « located at the origin of
space. If r = |r| > R,,, then the molecular potential V{(r) cancels ag inl the usual muffin-
tin model.

Let us now consider the quantum state |¢} of the incident electron and the quantum
state [y} of the electron scattered at atom ¢ The scattering potential ¥ ,(r,,) of this atom
is related to its t-matrix t,(r,) by the relation

oVa(ra)llp> = ta(r&)l¢>' (17)

The t-matrix of the molecule is given by

Na
To= 2t (..., T (18)
a=1

in which the effective transition matrix t} (ry, ..., Fy, ... ry, ) provides the amplitude
of the wave scattered at atom « in the presence of the other atoms of the molecule.
These effective transition matrices are self-consistent solutions of the N, multiple-
scattering equations:

Ny
£ () = tu(re) + talr) 2 GE(E ~ Vot (1), (19)

BFEx

In the above equation, Gf (E — V,,,;} is the retarded Green function for a free electron
of kinetic energy £ moving in a constant potential V. Let us note that the dependence
of t; on vectors r, # r, has been intentionally omitted; in this way, we get a closely
packed form of the multiple-scattering equations (19).

In the angular-momentum representation, the operator t,(0) associated with atom
o centred at the origin is represented by the diagonal matrix 7 ,(0) whose elements are
given by

F (0, Im, I'm'y = [(1 = ¥7)/21K] 8,6 (20)

in which K = V'E ~ V.. In practice, J,(0) is a square matrix of order (I, + 1)? (/,, is
the maximum value of / for which the phase shifts §f are not small enough to be
neglected). Unfortunately, atoms a are not centred at the origin: equation (19) clearly
shows that operators t}(r,) and t.{(r,) associated with atoms « are centred at the
molecular sites. Thus, in the basis set of spherical waves centred at the origin, these
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operators cannot be represented by a diagonal matrix. At this stage, it is convenient to
introduce the translation operators F(r,) from origin to sites ¢ defined by

F(r)lny ={r —r.). (1)
By using equation (21) in the obvious identity:

ta(rasr:r')=ta(0,r"ra:r'_ru')

we obtain:

tolre) = F(—ra)t.(0)F(ra). (22)
In a similar way, we can show that
ti(ri,.. ey P )= F(r N (r — 1o, L0, ey, — P F(,). (23)

Henceforth, ty(r; —r,,....0,...ry, —r,) will be denoted by tZ (0). In this section,
we have to find a matrix representation of operators F(r,), t.(r.), G{(E— V)
and t; (r,) in the basis set of the free spherical waves. Before achieving this work, let us
first write down the essential mathematical results which have to be known for the
understanding of the subsequent developments.

3.2. Mathematical background

First, let us recall that the free spherical waves are defined by
W i (1) = Q) (k)Y 1 (#/1). (24)

The expression for G§ (E — V) in the angular momentum representation also requires
the use of the free spherical outgoing wave functions:

X (F) = () DR (/). (25)

Definitions of all the special functions occurring in equations (24) and (25) can be found
in standard texts (Pendry 1974, Marcus and Jonas 1984). All subsequent developments

are mainly based upon the use of the well known translation theorems (Marcus and Jonas
1984):

Yirmy (1) + 12) = dm(—1)™ 2 2 Clymy, b — ma, Iy — my)

{ama lamy
X Y ktamy POV k1amy {12) (26a)
Xxnml("l +r) =4x(~1)™ fE IZ Clhymy, Iy —ma, I3 — m;)
My iymy
X Y gty (P X K1y (F2) (26b)

The last expression is only valid if r; < r; and in both expressions C({ym,, lam,, I3m;) are
Gaunt’s coefficients, given by

C(I;m1,12m2,13m3) =jf Y,lmi(r/r) Y,zmz(r/r) Y;‘Wa(r/r) Sineded(p (266)
54
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3.3. Matrix representation of operators t(r,)

From the first translation theorem (26a) and the definition (21), we can easily establish

that, on the basis of free spherical waves, the translation operators F(r,) have the fol-

lowing matrix representation:

T(rg, Im, I'm'y = dx(~1)"" 2 CU—m, Iy — my, Pm' Y g, (Pa)- 1))
11

Then, using this relation and equations (20), (22) and (26), we can obtain a matrix

representation of the operator t (r.):

ga’(ra') = @(—ra)gw(0)$(ra)' (28)

Let us emphasize that, in contrast to 7 ,(0), J,(r,) does not generally reduce in practice
to a square matrix of order (/, + 1). From a quantum mechanical point of view, this can
be easily understood. The radial part of the free spherical waves W gy, (#) for which /> 0
is actually very smallinside a sphere centred at the origin. We can estimate that the radius
r, of this sphere is roughly the classical impact radius V K/ + 1)/K (in Rydberg atomic
units). This radius #, appears as an increasing function of the angular momentum /. Let
us now consider an electron described by a free spherical wave Wy, (r). According to
the previous remarks, this wave function is practically unaffected by ascattering potential
centred at the origin whose range (in fact, the muffin-tin radius) is less than the impact
radius r;. In other words, for this angular-momentum state, the atomic potential actsin a
region where the probability of finding an electron is very small. Consequently, scattered
wave, t-matrix elements J (0, Im, I'm') and phase shift 6§ are negligible. Obviously,
this is no longer true if the atomic scatterer « is not located at the origin: in this case, the
atomic potential can act in a region where the probability of finding an electron with an
angular momentum / > [, is no longer negligible. In this way, larger angular momenta
than /, have to be considered. Finally, the order of matrices 7 ,(r,} and of the molecular
transition matrix have to be determined by considering the range of the atomic potentials
together with the size of the molecule. In practice, we start with aninitial value /,,, which
isthe largest value of I}, I;, . . ., Iy,. Then we try larger and larger values of /,,, until the
molecular t-matrix elements converge. We finally deal with square matrices of dimension
(lmax + 1)2‘

3.4. Matrix representation of G (E — V)

Examination of the multiple scatttering equations (19) shows that the Green operator
Gg (E — V) is multiplied from the right by t3 (rg) and from the left by t,(r,}, and that
all pairs (o, ) of distinct indices are considered. Thus, for each pair (&, 8), a matrix
representation of G{ (E ~ V) using both complete basis sets of free spherical waves
centred at r, and rg has to be introduced. For this purpose, we can write the relation

d (E = Vo) = F(=ro)H(r, — rg)F(ry) (29q)
in which
H(r, —rg) = F(ry)Gg (E — Vop)F(—r). (29b)
So, using the expression for the Green function in spherical co-ordinates:
G§ (E = Vops r = r') = K Z [Y xin )i )00" = 1)

+ Xkt ()Y ki (r)8(r = 7')] (30)
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and the second translation theorem (26b), we can easily obtain a matrix representation
of H{r, — rg):

H(r, —rg, Im, I'm") = dxK(—1)" > CU—m, L, —my, 'm Y gpm (Fe — P

1im
(31)
A matrix version of equation (29a) is directly obtained by using the definitions (27) and
(31) of matrices % and ¥. We obtain '
Gro —rg) = F(—r)¥(ro — rg)F(rp) (32)

in which 9(r, — rg) is a matrix representation of G{(E — V) in both basis sets of
spherical waves centred at r,, and r;.

3.5. Multiple scattering and transition matrices of a molecule

Letusdenote I } (r,) the matrix representation of t} (r,, ) in the basis set of free spherical
waves. Then, the multiple-scattering equations (19} can be rewritten in the matrix form
N

T20ra) = Tolrad + T alre) 2 ra = rp)T§(rp)- (33)
fo
It is possible to reduce these N, equations to one equation. For this purpose, let us

construct a new representation by combining the matrices occurring in equation (33)

into larger matrices with N (/. + 1)? rows and columns. From matrices T ,(r,), we
define

g](’”l) 0........... 0
0 T2(ry) :
| ¢ | 34
: ; (34)
0 . il 0 Tulrs,)

In a similar way, we can define a matrix T* from the effective t-matrices I ,(r,). Let us
also define the matrix G from the N (N, —1) matrices 4(r, — rg):

0 fg(fl -—r,_,) ............... (g(r] - rNa)
G(r; — ry) 0., Gry — ry
g=| . " ERLRS BET
cg(rNa‘_ rl) ............ <§(rNu —ry,- [‘)' el 0
Then, the N, multiple scattering equations (33) reduce to one equation:
™=T+TGT* (36}
that we can easily solve to find
T =0(1-X)"'T. (37N
In the above expression
X=TG (38)

is the multiple-scattering matrix of the molecule. A matrix representation 7, of the
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Figure 1. Differential cross section of CO in polar coordinates for different values of

!mmr: — [m:u. =35---- Imax =4;...., lm:xx =5——, JImzn; =6; I 2‘rnw: =7

transition operator T, of the molecule defined in equation (18) is simply obtained by
summing the diagonal blocks of T*.

4. Application to the case of carbon monoxide on Pt(111)

The previous formalism is now applied to the simple case of a CO molecule whose bond
length is that observed when it is chemisorbed on the {111) single-crystal surface of
platinum (Ogletree et al 1986). Calculations are carried out for an energy of 60 eV and
with our definition of the quantum number m, the z axis is parallel to the C—O bond.
We assume here that the muffin-tin zero energy of carbon and oxygen atoms matches
that of the substrate atoms. In this way, the carbon monoxide molecule is immersed in
a homogeneous medium whose potential is the optical potential V. At 60eV, V,, is
taken equal to that of platinum, that is to say —12.499 — 4,013i in electron volts (J
Rundgren, private communication) and consequently the energy of incident electrons
with respect to the muffin-tin zero energy of carbon and oxvgen is 72.499 eV. At this
energy, the atomic potential range of these atoms is such that only the first six atomic
phase shifts are not negligible (/g = /c = 5). They are calculated without taking account
of temperature effects.

According to Ogletree et al (1986) the C—O bond length has been fixed at 1.15 A.
As the C—O bond is normal to the surface, its orientation is that of the incident beam
dirgction, which is also the z axis direction. The CO t-matrix elements depend on the
choice of the origin of space: it is chosen at the centre of the C—OQ bond. As the oxygen
atom is at the vacuum side and the carbon atom at the metal side, the t-matrix of CO is
computed for ro = —0.575 2 and rc = +0.575 % (in A).

Increasing values of / are tried until the CO transition matrix elements converge. This
convergence is examined through the differential cross-section ¢ of CQ, given by

o6, @1, 6;, @) = |f(9f> @, O, ‘Pi)[z (39)
in which
FBe 5, 6, @) = =4 2 2 Y 108, @) T I, Ui Y £, (615 @), (40)
Im I'm'

Values of [, from 3 to 8 have been considered here. The incident plane wave has a wave
vector in the positive direction of the z axis, (i.e. the O—C bond direction, 8, = 0). In
this way, o only depends on 6. Figure 1 shows ¢(#8) in polar coordinates. We observe
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Figure 2. Differential cross section of CO in polar coordinates calculated with (-—-) and
without (—) taking into account multiple scattering between oxygen and carbon,

here that the backward scattering is lower than the forward scattering. o(6;) presents
strong variations for 8; > 7/2 when /,,,, goes from 3 to 4 and for 6; < /2 when I, goes
from 4 to 5. For [, = 6 and 7 we obtain very similar values of ¢(8;) (difference about
107%). Between 7 and 8, the variations of o(8;) are less than 107, So we can choose I, =
6., for which a satisfactory accuracy is obtained with a reasonable computational time.,

Let us note here that muitiple-scattering events between oxygen and carbon play
an important role and consequently cannot be neglected. This is clearly apparent by
comparing a complete calculation of the transition matrix J, of the molecule to a cal-
culation of this matrix in which the multiple-scattering matrix X is cancelled (see relation
(37)). The results of both calculations, which are quite different, are shown in figure 2.
In the present case, disregarding the multiple-scattering events increases the forward
scattering and decreases the backward scattering.

5. Conclusion

We have revisited here the concept of the renormalized t-matrix, which was introduced
on the one hand by Saidin and Pendry (1986, 1987) and on the other hand by the present
authors in a work devoted to the statistical aspects of the diffuse LEED problem (Le Bossé
etaf 1988, 1990). We arrive at the conclusion that the renormalized t-matrices introduced
in the two bodies of work do not have the same meaning. [t appears that the renormalized
t-matrix we define here takes into account all multiple-scattering processes involving
adsorbate and substrate and can be used in a global calculation of the form facter. On
the other hand, the SP renormalized t-matrix only takes into account multiple-scattering
processes in which the first and last processes are scatterings at the molecule, However,
this t-matrix is suitable for use in step 2 of the SP calculation.

The ways of computing both kinds of renormalized t-matrices are also totaliy
different: in the SP approach the renormalized t-matrix 7 is computed via the reflection
matrix of a cluster of atoms surrounding the adsorbate; in the method presented here,
the renormalized t-matrix K, is computed via the first column Mg(k; < &™) and the first
line Mg(k™ <k ) of the substrate scattering matrix, in the directions of the initial
(k = k) and final (k = k¢ ) wave vectors. The calculation of these matrices is a classical
LEED calculation (KKambe's method for planar scattering and the Bloch wave method for
interplanar scattering). After having stored these matrices, it only remains to determine
the t-matrix of the single molecule.
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For this purpose, we have presented in section 3 amethod for calculating the t-matrix
of a close-packed cluster of atoms. It is based upon the determination of a multiple
scattering matrix X whose definition is quite similar to the one introduced in the classical
LEED theory. This method provides an expression of the molecular t-matrix which can
be easily usedin our diffuse LEED theory. It can be shown that cluster t-matrix calculation
becomes very time-consuming for large energies and for clusters of large size. For
instance, in the case of an electron of 60 eV colliding with a small molecule such as CO,
the numerical application of section 4 shows that all values of / = /., = 6 have tobe kept.
Then, we have to deal witha multiple-scattering matrix whose dimensionis 2(/p,, + 1) =
98. It can be easily imagined that for larger molecules and larger energies, this dimension
might become very important. For instance, if we assume that multiplication by 2 of the
number N, of atoms doubles the volume of the cluster, then the impact radius of the
cluster and consequently /.., are roughly multiplied by */2. On the other hand, if the
electron energy is multiplied by 2, I.,, which roughly increases as VE,is multiplied by
V2. So doubling the size of cluster and the energy amounts approximately to muitiplying
fnix DY 1.8 and consequently to taking /... = 11. Then the dimension of the multiple
scattering matrix X would become 4({_,,, + 1)? = 576.

The single-crystal substrate is a cluster incomparably larger than a molecule. Never-
theless, the dimension of multiple-scattering matrices used in the conventional LEED
theory is never very large. This comes from the fact that a monoatomic metal can be
entirely described in terms of one of its atoms and by using operators of its translational
group. In the same way, if a cluster has a particular symmetry, we can resort to its
point group for reducing the dimension of the multiple-scattering matrix. 5o the theory
described here can only be applied in its present form to the case of small molecules and
for low energies. We cannot more accurately define the limitations of the practical
applications of this theory because they are essentially determined by the performance
of the computer which is used. In a second paper, the method will be applied to a diffuse
LEED study of CO on Pt{111).
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