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1. Phys.: Condens. Matter 4 (1992) 1671-1683. Printed in the UK 
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Abstract. Diffuse backscattering of electrons at a single crystal surface is often due to the 
adsorption of atoms or molecules whose presence breuks the translational symmetry of the 
substrate surface. Two different approaches to the diffuse LEED problem have been given. 
The first, due to Saldin and Pendry, considersonly asingle molecule adsorbed at the surface. 
Thesecond,duetothe present authors. cunsidersapartiallyorderedoverlayerofmolecules 
and takes up the statistical aspect of the diffuse LEED problem. The first aim of this paper is 
to compare both approaches. In the case of adsorbates randomly and sparsely distributed at 
the surface, we show that they are equivalent. However, each of them uses a different 
concept for the renormalized t-matrix of the adsorbate. 

The renormalized t-matrix used in the present approach depends on the t-matrix of the 
molecule alone and on the scattering amplitude of the bare substrate, The problem of the 
determination of the latter quantity has already been treated LEED theories have been 
published and manyrEED computer programsare nowavailable. Paradoxically, thesimilar 
problem for a molecule, that is to say for a cluster with a small number of atoms. has not 
been so well studied as the previous one concerning an infinity of atoms. The second aim of 
this paper is to provide a theory of multiple scattering of electrons from a molecule, from 
which we can derive a suitable expression for the t-matrix that one can easily use in the 
diffuse LEED theory. Application lo the simple case of the CO molecule is examined here. 

1. Introduction 

The diffuse LEED theory aims to provide an expression of the intensity per unit of solid 
angle of electrons which are elastically backscattered from a partially ordered crystal 
surface, in the non-Bragg directions. On the basis of this expression, a comparison of 
measured and calculated diffuse intensities can be carried out to yield a set of optimal 
parameters characterizing the nature and the location of atoms at the surface. 

Partial order at the surface is due to the fact that atoms or groups of atoms located 
in the first atomic surface layers are not perfectly arranged to form a ZD regular lattice. 
The breakingofthez~ translationalsymmetryofthesubstrate can bedue to the presence 
of atoms or molecules sparsely adsorbed at the surface (Pendry and Saldin 1984) or to 
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the presence of geometrical defects such as vacancies (Rous and Pendry 1985), steps 
.(Rous and Pendry 1986), displacements of substrate atoms induced by chemisorption 
(Rous ef a1 1986) and so on. In previous papers (Le Boss6 etal1988,1990) we examined 
the first case where disorder has a chemical origin. We have shown that the diffuse LEED 
intensity can be expressed in terms of the Fourier transform of the site occupancy pair 
correlation functions and of the renormalired t-matrices of molecules adsorbed at the 
surface. Here, renormalized means that certain multiple scattering processes between 
admoleculesandsubstrateare takenintoaccount, namely thoseinvolvingonescattering 
event at a molecule. The renormalized t-matriw of a molecule adsorbed at a site of type 
p is given by (Le Boss6 et a1 1988 equation (4.14), 1990 equation (3a)): 

J C Le B o d  et a1 

K l ( p , k l  + k : )  =ti@.ki  + k : )  + X t , ( p , k l  +k,)M,(k,+k:)  
(st 

In this expression. the wave vectors are defined by 

k,' = k, + g T K t , 2 .  (24 
In equation (2c),i is the unit vector in the direction of the I axis. So, as the substrate lies 
in the region z > 0, k i  is a wave vector oriented from the vacuum to the substrate. 
Equations (2a),  (26)  and (Zc) implicitly assume that the molecular scattering potential 
due to ion cores is added to a constant potential Vopl due to the conduction or valence 
electrons of the adsorbate-substrate system. Labels f and i in equation (1) denote the 
final and initial states respectively, and label 1 in t, and K ,  refers to the reference site of 
the surface taken as the origin. The label p denotes the kind of site considered; for 
instance. p = 1 and p = pmax = 2 could denote on-toF and hollow sites respectively 
if both kinds of chemisorption site are occupied. The determination of K ,  requires 
knowledge of 

(i) the transition matrix tl(p) of each isolated adsorbate p;  
(ii) thescattering matrices M,of thesubstrate forwave vectorsparallel to thesurface 

in the direction of the electron gun (k,!) and in the direction of the electron detector (krr). 

Equation( 1) isderivedfromasrntisticalapproach to thediffuse  problem (LeBossE 
ef a1 1988). With this approach, a large number of molecules, which can occupy one or 
several kinds of chemisorption sites. are considered. It turns out to be convenient to 
separate the total scattered wave associated with a given configuration of the overlayer 
into its average over a statistical ensemble of configurations and its Euctuation from 
this average. We have shown that two approximations are needed to get a tractable 
expression for the diffuse intensities in terms of K , :  

(i) the total wave function scattered at the adsorbate-substrate system is approxi- 
mated by a first-order expansion in the fluctuations of the wave function; 
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(ii) a part of the wave illuminating a scatterer i, is emitted from the scatterers other 
than i; so this wave is approximated by its statistical average (this is nothing other than 
a molecular field approximation). 

In the particular case where there is only one kind ofchemisorption site and where 
the occupied sites are randomly and sparsely distributed at the surface, the expression 
for the diffuse LEED intensity reduces to the product of the square modulus of K, by a 
factor proportional to the surface coverage in molecules (Le Boss& eta1 1988). 

Another approach (Pendry and Saldin 1984, Saldin and Pendry 1986,1987) consists 
of considering only one molecule adsorbed at a perfect infinite single crystal surface. In 
this way, the statistical aspect of the diffuse LEED probem has been totally ignored. In 
the course of this approach, these authors are led to define a renormalized t-matrix of 
the molecule: 

In this expression, TM is the molecular t-matrix denoted here by t, and S is the retlection 
matrix of a cluster of substrate atoms which is related to the scattering matrix M, of the 
substrate in equation (1). 

In section 2. we discuss the present work in relation to the work of Saldin and Pendry. 
However, we can a priori assert that K, and I cannot be identical for the following 
reason. The calculation of Saldin and Pendry (henceforth SP) is split into three steps 
(Pendry and Saldin 1984): steps 1 and 3 take account of all multiple-scattering events 
which either begin or end with a multiple-scattering event at the bare substrate and step 
2 takes into account all the other scattering events, that is to say those which begin and 
end with a single multiple-scattering event at the molecule. The SP renormalized t- 
matrix only refers to processes included in step 2.  On the other hand, we carry out a 
global calculation and consequently our definition of the renormalized t-matrix includes 
all processes of steps 1 to 3. Hence our renormalized t-matrix cannot have the same 
meaning as the one introduced by Saldin and Pendry. 

Equation (1) of the renormalized t-matrix of the molecule can be calculated from 
the t-matrix t, of the single molecule and the scattering matrix M,of the bare substrate. 
Expressions for the scattering matrix M, of a semi-infinite single crystal can be found in 
a lot of reference books (Pendry 1974, Van Hove and Tong 1979, Marcus and Jonas 
1984). In the case where the adsorbates are atoms, the t-matrix is related to their phase- 
shifts by a standard expression which can be found in most classical quantum mechanics 
books (see equation (20) of section 3). On the other hand. it is difficult to find in the 
literature a sharply stated expression of the molecular t-matrix that we could use 
straightforwardly in the diffuse LEED theory previously presented (Le Boss& et all988, 
1990). So, applications for the case of molecular chemisorption require that we develop 
a theory of multiple scattering inside a molecule, leading to an accurate expression for 
the molecular transition matrix. 

In section 3, such an expression is given. Use of this expression requires that we 
know the location in space and all the non-negligible phase-shifts at a given energy of 
each atom of the molecule. In section 4, a short numerical application is carried out for 
the simple case of the CO molecule with the geometrical parameters determined in the 
case of adsorption on a Pt(ll1) single crystal surface. This paper is followed by a second 
one containing a diffuse LEED study of the Pt(ll1) surface partially covered with CO 
molecules. 
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2. Statistical and single-adsorbed-moleule approaches of the diffuse LEED problem 

The statistical approach to the diffuse LEED problem (Le Boss6 et a1 1988) is too 
complicated to be described clearly here in a few words. However, it is possible to 
provide a new and very simple approach to this problem presenting a great similarity to 
the single-adsorbed-molecule approach due to SP. So, thanks to this similarity, both 
approachescan be compared. Moreover, it will be seen that this new approach and the 
statistical approach rigorously lead to the same concept of the renormalized t-matrix. 
However, these approaches cannot be equivalent in that the new approach does not 
include the statistical aspect of the diffuse LEED problem. They are equivalent only when 
the molecules are randomly and sparsely distributed at one kind of chemisorption site. 
A description of this new approach only needs to use two standard results given in any 
reference book about scattering theory: 

J C Le Boss@ et a! 

(i) the Lipmann-Schwinger equation: 

IV) = I@) + GiWs + Vi)IV) (4) 

(Vs + V,)lV) =Ts+tI$). (5) 

(ii) the t-matrix definition: 

I~)denotesthequantumstateofthefreeincidentelectronandIV)isthatofthescattered 
electron. Vs and VI are the substrate and adsorbate potentials and thus V ,  + VI  and 
Ts+l are the potential and the t-matrix of the adsorbate-substrate system respectively. 
G,+ is the retarded Green function of a free electron of kinetic energy E moving in a 
constant potential Vopl. Our aim is to find / V )  by solving equation (4). We proceed as 
follows. We define ]pi) and iqs) as the effective incident waves which illuminate the 
adsorbate and the substrate respectively: 

Now, there are two ways of writing the total scattered wave lq): 

lV)= Iqi) + G,+Vi/V) (70) 

IV) = 1%) + GiVslV). (7b) 

Adsorbate and substrate t-matrices are straightforwardly obtained from the definition 
( 5 ) :  

VIlW) = t l  b l )  @a) 

VslN = t S  I&. (8b) 

I ~ i ) = I @ ) + G i t s l ~ 4  ( g a l  

b s )  = I@) + GTtiIq!) (9b) 

IY )= ( I  + G,+t~)lqi) (9c) 

Then, equations (6) and (7) can be rewritten in the form 
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IV) = (1 + Gbts)l~s).  

Ts+] = t5  + tr 

( 9 4  

(10) 

It is very convenient to give a kinematic form to the total transition matrix T,, I ,  that is 

in which t5 and t: are the substrate and adsorbate effective (and not renormalized) t- 
matrices respectively. So, using equations (3, (9) and (lo), it can be straightforwardly 
shown that 

t: = ts + tsG$tf 

tf = tl + t lG$t$.  
(1la) 

( I l b )  
From equations (4). ( 5 ) ,  (10) and (ll), the total wave function is expressed in terms of 
the t-matrix of the molecule alone t,; the t-matrix of the substrate alone 4; and the 
effective t-matrix of the substrate tH . So we obtain 

IV) = I@) + G$tsI@) + Gltil@) + G$tsG,+tiI@) + GO+fiCbfS* I@) 
+ GltsG$tlG,'ti  I@).  (12) 

Let us point out that the physical meaning of Gl;tl@) is more obvious than that of the t- 
matrix t because if i@) is the primary incident beam, then G:t/@) is the scattered wave 
and G t t  is the scattering amplitude matrix. So,  equation (12) can be easily interpreted. 

The two first terms represent the total LEED wave IVLEED) because G;ts is the 
scattering amplitude matrix of the substrate alone, for which ZD translational symmetry 
exists. Asaconsequence, the remaining termsdenoted by I VDLEED)represent the diffuse 
LEED wave which can be written in the form 

I VDLEED) = G$KI I@). (13) 
By comparing equations (12) and (13), we obtain the renormalized transition matrix of 
the molecule: 

K, = t ,  + tSGo+tl + t l G $ t z  +t,G$t,G,'t,*. (14) 
Let us remark that this expression, which is very similar to equation (l), is exact. If 

we replace t: with ts in equation (14) it is easy to show that the representation of the 
operator Kl in the basis set of the plane waves exactly coincides with equation (1). From 
that point of view, statistical and single-adsorbed-molecule approaches are in perfect 
agreement. However, there are two reasons that they cannot lead to the same expression 
forthe diffuse ~ ~ ~ ~ i n t e n s i t y p e r u n i t  ofsolidangle. Firstly, the average distance between 
admolecules is not generally large enough to consider them in isolation. Secondly, they 
are not randomly distributed at the surface and consequently the waves scattered from 
the admolecules do not have a random phase. So, interferences between these waves 
have to be taken into account via a structure factor (Le Boss6 et a1 1988). Finally, the 
two approaches are equivalent only in the particular case where the admolecules are 
randomly and sparsely distributed at the surface. Let us recall that we can get equation 
(1) from the statistical approach only if we assume that the fluctuations of the scattered 
waves from their average are negligible (Le Boss6 et a1 1988). On the other hand, it is 
shown here that the single-adsorbed-molecule approach leads to equation (1) when we 
neglect the relaxation of the substrate t-matrix induced by the presence of the molecule 
(t; = ts). 
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To make the subsequent developments clearer, the physical meanings of the four 
terms in equation (14) have to be examined. It is important to note that there are three 
kinds of diffuse multiple-scattering event: 

(i) those which are terminated with a single-scattering event at the molecule (first 
and third terms of equation (14)). For these terms, a left-hand factorization of the t- 
matrix t, can be achieved; 

(ii) those which begin with a single-scattering event at the molecule (first and second 
termsof equation (14)). for these terms, a right-hand factorization oft, can be achieved; 

(iii) thefourth termofequation(14)forwhichonecandoneitherleft-handnor right- 
hand factorization of t , .  

Let us now come back to equation (3) of SP. All the multiple-scattering events 
involved in this expression are terminated with a single-scattering event at the molecule 
because of the left-hand factorization of T,. So equation (3) does not take into account 
all the multiple-scattering events which are terminated with a scattering event at the 
bare substrate. Moreover, if we expand equation (3) in a power series in ST,, it appears 
that we can do a right-hand factorization of T,. Consequently, equation (3) does not 
take into account any multiple-scattering event which begins with a scattering at the 
bare substrate. Note that such a limitation could be envisaged in the EXAFS, XANES and 
ELNES problems in which the emission of a photoelectron from a molecule is necessarily 
the first event which participates in any multiple-scattering process. 

Let us now examine how to derive equation (3) of SP from our result. Firstly, we 
have to remove all terms associated with multiple-scattering events terminated by a 
rcflcction at the bare substrate, because they are already taken into account in step 3 of 
the SP calculation. Then equation (14) reduces to 

K, = t ,  + tlCJts = tr . ( 1 5 4  
This amounts to assuming that the effective and renormalized t-matrices of the molecule 
are identical. Secondly, we have to remove all the terms associated with multiple- 
scattering events which begin with a reflection at the bare substrate, because they have 
already been taken into account in step 1 of theSP calculation. This condition necessitates 
the replacement of (1  l a )  by 

ti =tsG,'tf.  (156) 
Then, from equations ( E a ) .  (1%) and (l lb),  we can straightforwardly show that K, 
becomes 

K, = t , [ l  - (Gtts)(G,'tI)]-' (1W 
which is rigorously equivalent to equation (3). So, it is clear that the renormalized t- 
matrix introduced in the statistical approach to the diffuse LEED problem (Le Bosse et 
all988, 1990), and rediscovered here by another approach, is totally different to the 
renormalized t-matrix of SP. 

3. Multiple scattering from a molecule 

3.1. Basic definitions 

Let us consider a molecule with .Va atoms. The atom CY of this molecule is characterized 
by 
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(i) the vector r, which defines its location, 
(ii) all its non-negligible phase shifts Sp ([ = 0, 1, . . . , lc). 

We assume that this molecule is immersed in a homogeneous medium with a potential 
VOp,. The characterization of the scattering properties of each atom by phase shifts 
implicitly requires the use of their ion core potential described by a muffin-tin model. 
For convenience, the origin of space will be chosen at the centre of the smallest sphere 
of radius R,  including all the atomic muffin-tin spheres. Let us call V(r) the molecular 
scattering potential: 

In this expression, V,(r) is the scattering potential of atom cu located at the origin of 
space. If r = lr( > R,,  then the molecular potential V(r) cancels as in the usual muffin- 
tin model. 

Let us now consider the quantum state 14) of the incident electron and the quantum 
state 11)) of the electron scattered at atom a. The scattering potential?"&,) of this atom 
is related to its t-matrix t&,J by the relation 

Y&'?)IW = t*(ra)l$J).  (17) 

The t-matrix of the molecule is given by 
N, 

T, = E t : ( r , ,  . . . , T a r .  . . rN) 
cT= I 

in which the effective transition matrix t: (rl  , . . . , r e ,  . . . r v a )  provides the amplitude 
of the wave scattered at atom LY in the presence of the other atoms of the molecule. 
These effective transition matrices are self-consistent solutions of the N ,  multiple- 
scattering equations: 

N, 

fl= I 
Bee 

t i ( r , )  = + W e )  2 Gb(E - vopt)tg(rp). (19) 

In the above equation, G,+ ( E  - V,,,,) is the retarded Green function for a free electron 
of kinetic energy Emoving in a constant potential Vopt .  Let us note that the dependence 
oft: on vectors r,, # r, has been intentionally omitted; in this way, we get a closely 
packed form of the multiple-scattering equations (19). 

In the angular-momentum representation, the operator t,(O) associated with atom 
cucentred at the origin is represented by the diagonal matrix Y,(O) whose elements are 
given by 

~ ~ ( 0 ,  ~ m ,  ~ m ' )  = [(I - e*x*f)/2i~] 6,z.6,,,,, (20) 

in which K = q. In practice, F,(O) is a square matrix of order ( I ,  + 1)2 (le is 
the maximum value of I for which the phase shifts 61" are not small enough to be 
neglected). Unfortunately, atoms cuare not centred at the origin: equation (19) clearly 
shows that operators t,*(r,) and t&,) associated with atoms (Y are centred at the 
molecular sites. Thus, in the basis set of spherical waves centred at the origin, these 
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operators cannot be represented by a diagonal matrix. At this stage, it  is convenient to 
introduce the translation operatorsF(r,) from origin to sites adefined by 

J C Le Boss6 et a1 

W,)lr) = Ir - rA. 

By using equation (21) in the obvious identity: 

t a ( rWrr ,  r') = t,(O,r - r*,r' - r,) 
we obtain: 

t&@) = F(-rm)tm(0)F(re). (22) 

(23) 

In a similar way, we can show that 

t:(rl,. . . , re, .  . . rN,) = F(-rb)t:(rl - r,, . . ., 0,.  . . rN, - rm)F(ra). 

Henceforth, ti(rl - r,, . . ., 0, . . . rN, - r,) will be denoted by tE(0). In thissection, 
we have to find a matrix representation of operators F(r& t.(re), G , J ( E -  V,,,) 
and t: (re) in the basis set of the free spherical waves. Before achieving this work, let us 
first write down the essential mathematical results which have to be known for the 
understanding of the subsequent developments. 

3.2. Mathematical background 

First, let us recall that the free spherical waves are defined by 

YKI,,,(~) = (i) ' j&)yddr). (24) 

The expression for G$ (E - V,,,) in the angular momentum representation also requires 
the use of the free spherical outgoing wave functions: 

xK,,(r) = ( i ) ' + l ~ ~ l ) ( ~ r ) Y , m ( r / ~ ) .  (25) 
Definitions of all the special functions occurring in equations (24) and (25) can be found 
in standard texts (Pendry 1974, Marcusand Jonas 1984). All subsequent developments 
are mainly basedupon the use ofthe well known translation theorems (MarcusandJonas 
1984): 
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3.3. Matrix representation of operators t ( r )  

From the first translation theorem (26a) and the definition (21), we can easily establish 
that, on the basis of free spherical waves, the translation operators F(r,) have the fol- 
lowing matrix representation: 

T(re , lm , l 'm' )=4n( - l )m'  C ( l - m , l ,  - m , , i " ' ) q J ~ r , ~ , ( r ~ ) .  (27) 
l m  

Then, using this relation and equations (20). (22) and (%), we can obtain a matrix 
representation of the operator tD(re): 

FArct) = ~ ( - r e F " w  (28) 
Let us emphasize that, in contrast to TJO), S,(r,) does not generally reduce in practice 
toasquarematrixoforder(I, + l),. Fromaquantummechanicalpoint ofview, thiscan 
be easily understood. The radial part of the free spherical waves Yu,(r) for which I > 0 
isactuallyverysmallinside aspherecentred at theorigin. We can estimate that the radius 
rr of this sphere is roughly the classical impact radius m / K  (in Rydberg atomic 
units). This radius rr appears as an increasing function of the angular momentum I .  Let 
us now consider an electron described by a free spherical wave YKfm(r). According to 
the previous remarks, this wave function ispracticallyunaffected by ascatteringpotential 
centred at the origin whose range (in fact, the muffin-tin radius) is less than the impact 
radius rl. In other words, for this angular-momentum state, the atomic potential acts in a 
region where the probabilityoffindinganelectron isvery small. Consequently, scattered 
wave, t-matrix elements Sa(O, Im, I'm') and phase shift 6p are negligible. Obviously, 
this is no longer true if the atomic scatterer a is not located at the origin: in this case, the 
atomic potential can act in a region where the probability of finding an electron with an 
angular momentum 1 > 1, is no longer negligible. In this way, larger angular momenta 
than I ,  have to be considered. Finally, the order of matrices TJrJ and of the molecular 
transition matrix have to be determined by considering the range of the atomic potentials 
togetherwith thesizeofthemolecule. In practice, westartwith aninitialvalueI,,,which 
is the largest value of 1, , I , ,  . . . , lNa. Then we try larger and larger values of I,,, until the 
molecular t-matrixelements converge. We finally deal with square matrices of dimension 
(4" + 1)'. 

3.4. Matrix representation of G i ( E  - Vopt) 

Examination of the multiple scatttering equations (19) shows that the Green operator 
G $ ( E  - Van) is multiplied from the right by t; ( rg )  and from the left by te(ra), and that 
all pairs (a, p) of distinct indices are considered. Thus, for each pair ((U. p), a matrix 
representation of G: (E - V,,,) using both complete basis sets of free spherical waves 
centred at r, and rp has to be introduced. For this purpose, we can write the relation 

in which 
Gb ( E  - Vo,J = F(-re)ff(re - r,dF(rp) 

We - r.d = F ( r , ) G ( E  - VOpP(-r,d. 

G; ( E  - v,,,, r - r ' )  = KE [ ~ K r m ( r ) x ~ l m ( r f ) O ( r f  - r)  

(294  

(296) 
So, using the expression for the Green function in spherical co-ordinates: 

rm 

+ X%m(r)VK/m(r')0(r- 7')l (30) 
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and the second translation theorem (26b), we can easily obtain a matrix representation 
ofH(r,-rs):  

X(ro  - r B . ! m . l " ' ) = 4 ~ ~ ( - 1 ) " "  

J C Le Boss6 et a1 

C( l -m , l l  - m , , L " ' ) ~ K , l m , ( r w  - r s ) .  
b i  

(31) 
A matrix version of equation (29a) is directly obtained by using the definitions (27) and 
(31) of matrices 3 and Y. We obtain 

%(r* - rs )  = 9(-rm)Y(re  - rs)9(rs)  (32) 
in which %(r0 - rp) is a matrix representation of Cb(E - VOpJ in both basis sets of 
spherical waves centred at r, and rs. 

3.5. Multiple scattering and rransition matrices of a molecule 

Let usdenote T~(r,)thematrixrepresentationoft~(r,)inthebasissetoffreespherical 
waves. Then, the multiple-scattering equations (19) can be rewritten in the matrix form 

v il 

@=I 
8 + n  

9;(re) = + yrr(ra)  2 - rP)T$(rp). (33) 

It is possible to reduce these N .  equations to one equation. For this purpose, let us 
construct a new representation by combining the matrices occurring in equation (33) 
into larger matrices with N,(I,,,,, + 1)' rows and columns. From matrices Tm(re). we 
define 

. . . . . .  . . . o  1 

In a similar way, we can define a matrix T* from the effective t-matrices TJrJ .  Let us 
also define the matrix G from the N J N ,  - 1) matrices%(r, - rp): 

~ 8 ( r ,  - r . . . . . . . . . . . . . .  . q r ,  - r , , ) ]  l o  2 

Then, the N, multiple scattering equations (33) reduce to one equation: 
T* = T + TGT* (36) 

that we can easily solve to  find 
1' = (1 - X)-'T. (37) 

X = T G  (38) 

In the above expression 

is the multiple-scattering matrix of the molecule. A matrix representation T,,, of the 
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Figure 1. Differential cross section of CO in polar coordinates for different values of 
/ "U". . - - (  3 m"X = 3 ;  ...., / mlX = 4 .  , . . ._ ,  1,,,=5;--.--.,1.,,=6;--- I I m u  = 7 .  

transition operator T, of the molecule defined in equation (18) is simply obtained by 
summing the diagonal blocks of T* . 

4. Application to the case of carbon monoxide on Pt(ll1) 

The previous formalism is now applied to the simple case of a CO molecule whose bond 
length is that observed when it is chemisorbed on the (111) single-crystal surface of 
platinum (Ogletree et a1 1986). Calculations are carried out for an energy of 60 eV and 
with our definition of the quantum number m,  the z axis is parallel to the C-0 bond. 
We assume here that the muffin-tin zero energy of carbon and oxygen atoms matches 
that of the substrate atoms. In this way, the carbon monoxide molecule is immersed in 
a homogeneous medium whose potential is the optical potential V,,,,. At 60eV, VOp, is 
taken equal to that of platinum, that is to say -12.499 - 4.013i in electron volts ( I  
Rundgren, private communication) and consequently the energy of incident electrons 
with respect to the muffin-tin zero energy of carbon and oxygen is 72.499 eV. At this 
energy, the atomic potential range of these atoms is such that only the first six atomic 
phase shifts are not negligible (b = 1, = 5).  They are calculated without taking account 
of temperature effects. 

According to Ogletree eta1 (1986) the C-0 bond length has been fixed at 1.15 A. 
As the C-0 bond is normal to  the surface, its orientation is that of the incident beam 
direction, which is also the z axis direction. The CO t-matrix elements depend on the 
chaice of the origin of space: it is chosen at the centre of the C-0 bond. As the oxygen 
atom is at the vacuum side and the carbon atom at the metal side, the t-matrix of CO is 
computed for ro = -0.575 i and rc = +OS75 i (in A). 

Increasingvaluesoflare trieduntil the CO transitionmatrixelementsconverge. This 
convergence is examined through the differential cross-section uof CO, given by 

qf, ei, Vi) = I f ( % ,  pr, ei, ~ i ) l ~  (39) 

(40) 

in which 

Re,, qf, ei, qi) = -4xE E y,m(e,, T J T ~ U ~ ,  rm')YFm,(ei, vi). 
fm I"' 

Values of l,,, from 3 to 8 have been considered here. The incident plane wave has a wave 
vector in the positive direction of the z axis, (i.e. the 0-C bond direction, Bi = 0). In 
this way, uonly depends on Of. Figure 1 shows a(&) in polar coordinates. We observe 
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Figure 2. Differential cross section of CO in polar coordinates calculated with (---) and 
without (-) taking into account multiple scattering between oxygen and carbon. 

here that the backward scattering is lower than the forward scattering. 4 0 , )  presents 
strong variations for 0, > z/Z when I,,, goes from 3 to 4 and for < z/2 when I,,, goes 
from 4 to 5. For I,,, = 6 and 7 we obtain very similar values of .(e,) (difference about 
W3). Between7and8, thevariationsofa(0,)arelessthan lo-*. Sowecanchoosel,,, = 
6. for which a satisfactory accuracy is obtained with a reasonable computational time. 

Let us note here that multiple-scattering events between oxygen and carbon play 
an important role and consequently cannot be neglected. This is clearly apparent by 
comparing a complete calculation of the transition matrix Tm of the molecule to a cal- 
culation of this matrix in which the multiple-scattering matrix X iscancelled (see relation 
(37)). The resultsof both calculations, which are quite different, are shown in figure 2. 
In the present case, disregarding the multiple-scattering events increases the forward 
scattering and decreases the backward scattering. 

5. Conclusion 

We have revisited here the concept of the renormalized t-matrix, which was introduced 
on the one hand by Saldin and Pendry (1986,1987) and on the other hand by the present 
authorsin aworkdevoted to thestatistical aspectsofthediffuse ~~EDproblem (LeBoss6 
eta11988.1990). Wearriveat theconclusion that therenormalized t-matricesintroduced 
in the two bodiesofworkdonot have thesamemeaning. It  appearsthat therenormalied 
t-matrix we define here takes into account all multiple-scattering processes involving 
adsorbate and substrate and can be used in a global calculation of the form factor. On 
theother hand, theSPrenormalized t-matrixonly takesintoaccount multiple-scattering 
processes in which the first and last processes are scatterings at the molecule. However, 
this t-matrix is suitable for use in step 2 of the SP calculation. 

The ways of computing both kinds of renormalized t-matrices are also totally 
different: in the SP approach the renormalized t-matrix  is computed via the reflection 
matrix of a cluster of atoms surrounding the adsorbate; in the method presented here, 
the renormalized t-matrix K, is computed via the first column Ms(k; t k') and the first 
line Ms(k- c k ; )  of the substrate scattering matrix, in the directions of the initial 
(k  = k : )  and final ( k  = ki) wave vectors. The calculation of these matrices is a classical 
 cal calculation (Kambe'smethodforplanarscatteringand the Bloch wave method for 
interplanarscattering). After havingstored these matrices, it  onlyremains todetermine 
the t-matrix of the single molecule. 
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Forthis purpose, wehavepresentedinsection3 amethod forcalculating thet-matrix 
of a close-packed cluster of atoms. It is based upon the determination of a multiple 
scattering matrix X whose definition is quite similar to the one introduced in the classical 
LEED theory. This method provides an expression of the molecular t-matrix which can 
b e e a s i l y u s e d i n o u r d i f f u s e ~ ~ ~ ~  theory. It can beshown thatcluster t-matrixcalculation 
becomes very time-consuming for large energies and for clusters of large size. For 
instance, in the case of an electron of 60 eV colliding with a small molecule such as CO, 
thenumericalapplicationofsection4showsthat allvaluesofl S I,,,,, = 6 have to be kept. 
Then,wehave todeal withamultiple-scatteringmatrixwhosedimensionis2([,,, t 1)* = 
98. It can be easily imagined that for larger moleculesand larger energies, thisdimension 
might become very important. For instance, if we assume that multiplication by 2 of the 
number N ,  of atoms doubles the volume of the cluster, then the impact radius of the 
cluster and consequently l,,, are roughly multiplied by 3fi. On the other hand, if the 
electron energy is multiplied by2, lmaX, which roughly increases as a, is multiplied by 
fi. Sodoublingthesizeofclusterand theenergyamountsapproximately tomultiplying 
I,,, by 1.8 and consequently to taking I,, = 11. Then the dimension of the multiple 
scattering matrix X would become 4(fmax + 1)* = 576. 

The single-crystal substrate is a cluster incomparably larger than a molecule. Never- 
theless, the dimension of multiple-scattering matrices used in the conventional LEED 
theory is never very large. This comes from the fact that a monoatomic metal can be 
entirely described in terms of one of its atoms and by using operators of its translational 
group. In the same way, if a cluster has a particular symmetry, we can resort to its 
point group for reducing the dimension of the multiple-scattering matrix. So the theory 
described here can only be applied in its present form to the case of small molecules and 
for low energies. We cannot more accurately define the limitations of the practical 
applications of this theory because they are essentially determined by the performance 
of the computer which is used. In a second paper, the method will be applied to a diffuse 
LEED study Of CO on Pt(ll1). 
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